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SUMMARY

The film casting process is widely used to produce polymer film: a molten polymer is extruded through
a flat die, then stretched in air and cooled on a chill roll. This study is devoted to the extensional flow
between the die and the chill roll. The film shows a lateral neck-in as well as an inhomogeneous decrease
of the thickness. An isothermal and Newtonian membrane model, constituted of an elastic-like equation
for velocity coupled to a transport equation for thickness and a free surface computation, is used. These
equations are solved via the finite element method (continuous Galerkin for velocity and discontinuous
Galerkin for thickness). Both tracking and capturing strategies are used to determine the position of the
free surface (lateral neck-in). The influence of the processing parameters (Draw ratio and Aspect ratio)
on the film geometry is first determined. The onset of the Draw Resonance instability is then studied
through the dynamic response of the process to small perturbations. A critical curve splitting the
processing conditions into a stable and an unstable zone is derived. It is shown, consistently, with results
of a 1D model, that an increase of the air-gap between the die and the roll improves the stability of the
process. Numerical results concerning periodic fluctuations of the flow in unstable conditions are
compared with previous experimental results. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The cast film process is used to produce industrially synthetic film. A molten polymer (for
example a low density polyethylene) is extruded through a flat die (for example with a 1 mm
opening and a 1 m width), then stretched in air for a short distance (for example 15 cm) and
finally cooled down on a chill roll (see Figure 1). Then, in most cases, this film (called primary
film) is subjected to other processes, such as biaxial orientation, thermoforming, or coating on
a substrate.

The flow between die and chill roll is mostly elongational. A first aspect of interest is the
film geometry between the flat die and the chill roll. The film shows a lateral neck-in as well
as an inhomogeneous decrease of the thickness. The formation of edge beads surrounding a
central area of constant thickness is generally called the dog bone defect. These edge beads
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Figure 1. Sketch of the film casting process.

have to be trimmed. The second aspect concerns the stability of the film. Beyond a critical
speed of the chill roll, two types of problems may occur. In some cases, a drawing
instability known as Draw Resonance and characterized by periodic fluctuations of thick-
ness and width of the film may appear. This instability (close to the one encountered in the
fibre spinning process) has been studied both theoretically and experimentally using a 1D
model. The reader is referred to [1] for a bibliography and the description of a 1D model
(denoted as 1D model in the following) taking into account both width and thickness time
fluctuations. In other cases, film breakage is observed and this is generally related to the
viscoelastic behaviour of the molten polymer.

In this process, the width of the film as well as the stretching distance are several orders
of magnitude larger than the film thickness. Consequently, membrane (2D) models giving a
realistic prediction of the dog bone defect have been developed by d’Halewyn et al. [2] for
a Newtonian fluid and by Debbaut et al. [3] for a viscoelastic fluid. These studies are
stationary and consequently don’t deal with onset of Draw Resonance.

In this paper we develop a Newtonian, isothermal time-dependent membrane model (also
denoted as 2D model in the following). The Newtonian hypothesis is relevant for poorly
elastic polymers such as some linear low density polyethylenes. The second hypothesis is
justified by earlier studies taking into account heat transfer (Cotto et al. [4], Barq et al. [5])
and showing that the temperature decrease between the die and the roll remains limited.
Both tracking and capturing strategies are tested for the computation of the free surface in
stationary conditions. The first method uses deformations of an initial mesh whereas the
second one uses a fictitious fluid of low viscosity surrounding the polymer film. This last
method is used to study the dynamic response of the process to small perturbations. These
results are compared to those of the 1D model described in [1].

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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Figure 2. (a) The half flow domain V; (b) the half mean surface v.

2. THE MEMBRANE MODEL

2.1. Kinematic and rate of strain tensor

For the sake of simplicity, we consider that the mean surface of the film is in the plane z=0
(see Figure 2a for the definition of the axes). Let us note L the stretching distance, W(x) the
half width (W0 the half initial width) and e(x, y) the thickness of the film (e0 the thickness of
the die at exit). The key point is that e0 is small compared to the other dimensions W0 and L
(L�W0 and e0�W0). A first important parameter of the problem is the aspect ratio defined
as A=L/W0. The membrane model [2,3] is based on an expansion, classic in shell and
membrane theory, according to the small parameter e0/L. It leads to a system of partial
differential equations on the half mean surface v of the film (see Figure 2b):

v={(x, y)/05x5L, 05y5W(x)}.

Let us note U= (u, 6, w) the velocity field on the half flow domain V:

V=
!

(x, y, z)/(x, y)�v/−
1
2

e(x, y)5z5
1
2

e(x, y)
"

.

Components u and 6 are weakly varying through the thickness and component w is small
compared to u and 6. As w(x, y, 0)=0, kinematic on z=0 is reduced to a two components
velocity field U0 = (ũ, 6̃) on v defined by ũ(x, y)=u(x, y, 0) and 6̃(x, y)=6(x, y, 0). Assuming
that the polymer is incompressible leads to:

w(x, y, z)�z
(w
(z

(x, y, 0)= −z
�(ũ
(x

+
(6̃

(z
�

. (1)

Hence we have, for z=0:
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(y

+
(6̃

(x
�

(6̃

(x

Ã
Ã

Ã

Ç

É

.

More generally (for z"0), shear terms e; xz and e; yz are small compared to in-plane terms e; xx,
e; xy and e; yy. It can be proved using (1) and symmetry according to plane z=0. Denoting u0 the
mid-velocity component in the x-direction at die exit, we have:

e; xz�e0

u0

L2 ; e; xy�
u0

W0

and hence

e; xz

e; xy

�
w0e0

L2

where the order of magnitude is 10−2 for classical dimensions of the process.

2.2. The stress balance equation

Assuming a Newtonian behaviour, the stress tensor s and the hydrostatic pressure p are
related to the rate of strain tensor e; by:

[s ]=2h [e; ]−p [Id3].

The equilibrium free surface condition on upper and lower free surfaces of the film (z=
91

2 e(x, y)) leads, identifying the normal to the film surface to the z axis, to szz=0 and hence:

[s ]=
�[s̃ ]

0
0
0
n

with [s̃ ]=2h [ẽ ]+2h
�(ũ
(x

+
(6̃

(y
�

[Id2]. (2)

Integrating the balance equation through the thickness, one obtains the equilibrium equation
on domain v :

9x,y · (e [s̃ ])=0. (3)

2.3. The boundary conditions

The boundary of domain v is composed of the extrusion line g1 (x=0; 05y5W0), the free
surface g3 (05x5L ; y=W(x)), the take-up line g2 (x=L ; 05y5W(L)) and the symmetry
line g4 (05x5L ; y=0) (see Figure 3a). Denoting respectively u0 and uL extrusion and roll
velocities and ñ the normal to the edge of the film, we have:
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(x, y)�g1 : ũ=u0; 6̃=0; (4)

(x, y)�g2 : ũ=uL ; 6̃=0; (5)

(x, y)�g3 : [s̃ ]ñ=0; (6)

(x, y)�g4 : s̃x,y=0; 6̃=0. (7)

The second important parameter of the problem is the Draw Ratio defined as DR=uL/u0 and
characterizing the intensity of the stretching.

For given values of the thickness field e, the velocity field is the solution of the elliptic partial
differential equations and boundary conditions (2)–(7). This elastic-like system is denoted in
the following as Pb1.

As the boundary g3 (the edge of the liquid film) is a free surface, one has also to satisfy the
kinematic free surface condition:

(W
(t

+ ũ
(W
(x

− 6̃=0.

For given values of the velocity components ũ and 6̃, the half width of the film W is, in
stationary conditions, the solution of the following ordinary differential equation with initial
data at x=0 (denoted in the following as Pb2):

ũ
(W
(x

= 6̃ ; W(0)=W0. (8)

2.4. The thickness equation

Integrating the mass conservation equation through the thickness and using the kinematic
free surface condition on upper and lower bounds, one obtains:

Figure 3. (a) The boundary of domain v ; (b) the boundary of domain v̄.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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(e
(t

+9x,y · (eU0 )=0. (9)

This thickness transport equation has to be solved with the boundary condition:

e(0, y)=e0. (10)

In stationary conditions and for given values of the velocity field U0 , thickness e of the film is
the solution of the following equations denoted as Pb3 in the following:

9x,y · (eU0 )=0; e(0, y)=e0. (11)

2.5. The 1D models

The modified problem of the cast film process with constant width is used for testing and
initializing in the following. In this case W(x)=W0 and the boundary condition on g3 is
modified (g3 is no more a free surface):

(x, y)�g3 : s̃x,y=0; 6̃=0. (12)

The system of Equations (2)–(5), (7), (11) and (12) has an analytical solution function of x
only:

e(x, y)=e0
�uL

u0

�−x/L

; ũ(x, y)=u0
�uL

u0

�x/L

; 6̃(x, y)=0. (13)

This solution, corresponding to small values of the aspect ratio A (A�0), is also a classical
model for fibre spinning (e denotes in this case the section of the fibre). The stability of this
solution has been widely studied. This 1D model of the cast film process was extended for a
non-small value of A by assuming that the thickness e is constant on the width [1].

3. COMPUTATION OF THE STATIONARY SOLUTION

As established in the previous section, velocity, thickness and width of the film are, in
stationary conditions, solutions of a coupled and non-linear set of equations. It can be split
into an elliptic equation for velocity U0 (Pb1), a free surface problem (Pb2), and a transport
equation for the film thickness (Pb3). These problems are solved iteratively and coupled using
a fixed point method.

3.1. Computation of the 6elocity field

For given values of width W and thickness e distributions, the velocity field U0 solution of
Pb1 (Equations (2)–(7)) is computed by using a finite element method. Equation (2) is a
particular case of the 2D linear elasticity problem corresponding to Lamé’s coefficients l=2he
and m=he. The solution U0 minimizes the function F defined as:

F(U0 )=
& &

v

e [s̃ ] : [ẽ ]

on the space of velocity fields U0 satisfying the kinematic boundary conditions. This variational
problem is solved by using a continuous-order two finite element method. The flow domain v

is discretized by six nodes and isoparametric triangles.
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Figure 4. Principle of the discontinuous Galerkin method.

3.2. Computation of the thickness distribution

The thickness distribution e is, for given values of width W and velocity field U0 , the solution
of the transport Equation (11) with initial data on x=0 (Pb3).

This problem was solved by d’Halewyn et al. [2] using a first-order finite volume method,
easy to implement but lacking in numerical precision. We use a discontinuous Galerkin
method [6], based on a discontinuous approximation of the film thickness and allowing an
element per element treatment of the transport equation. Upwinding is introduced in the
Galerkin formulation by considering the thickness jump from the preceding element to the
next one. The weak form of the continuity equation on each element K is for any test function
f : &&

K

f9x,y · (eU0 )+
&
(K−

f(e−eext)U0 · ñ=0. (14)

In this formula eext denotes the thickness on the boundary (K− of inflow elements (see Figure
4). An important feature of the discontinuous Galerkin method is that Equation (14) results in
a linear system restricted to each element. The size of this system is equal to the number of
unknowns per element (six in our case). It can be easily solved on element K if, thanks to a
specific element ordering, eext has been previously calculated. This is possible because there is
no recirculation zone in the film casting process. Resolution starts with elements adjacent to
the border g1 and follows the flow field U0 everywhere on the domain v.

3.3. Computation of the free surface

Two strategies have been tested for the computation of the free surface g3. The first one (a
tracking strategy) uses the deformation of a rectangular mesh. In this case, free boundary g3

is a line joining nodes of the mesh. The second one (a capturing strategy) describes domain v

with a pseudo-concentration function (the thickness in this case) defined in a larger domain.
This last method, allowing the use of a constant mesh, will be used for unstationary
computations.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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3.3.1. Tracking strategy: the deformed mesh method. For a known velocity field, the half
width of the film, solution of the ordinary differential Equation (8) is computed by a
second-order Runge–Kutta method. The updated mesh of domain v is obtained as the image
of a uniform structured mesh of the rectangular domain [0, L ]× [0, W0] by the plane
transformation c :

c(x, y)=
�

x, y
W(x)

W0

�
.

3.3.2. Capturing strategy: the fictitious fluid method. It consists of considering a fictitious
thickness close to zero outside of v and solving Equation (9) on a larger domain v̄ (v̄³v).
It requires only a single mesh and the free surface is determined a posteriori ) as an isovalue of
the thickness distribution. The discontinuous Galerkin method, presented in the previous
section, allows transport of the thickness discontinuity. An element K of the mesh can be in v,
outside of v, or partly inside and outside. More precisely, let us consider the domain
v̄= [0, L ]× [0, W1] with W1]W0. Boundaries ḡk of v̄ are defined in Figure 3b. Let us note
ē the function e extended by zero outside of v. Then we have on v̄ (for any continuous
extension U( of U0 ):

9x,y · (ēU( )=9x,y · (eU0 )+eU0 · ñdg 3
.

In this equation upperbar denotes extension by zero outside of v and dg 3
is the dirac function

on g3. Hence Equations (8)–(9) are equivalent to the following equation (see Fortin et al. [7]):

(ē
(t

+9x,y · (ēU( )=0. (15)

For numerical experiments, the thickness e was extended by a small value ē=10−6 and
Equation (15) was solved by the discontinuous Galerkin method with the following boundary
conditions on ḡ1 and ḡ3: on ḡ1 : ē(0, y)=e0 for 05y5W0 and ē(0, y)= ē for W0By5W1, on
ḡ3 : ē(x, y)= ē. The extended velocity field U( is computed by solving on domain v̄ :

9x,y · (ē [s̄ ])=0. (16)

Let us remark that, as previously, this equation expresses the balance Equation (3) on domain
v and the boundary condition (6) as well. Finally the free surface is computed as the isovalue
e=10ē.

3.4. The iterati6e process

Computations of free surface, thickness and velocity are coupled by using a fixed point
algorithm. The analytical solution (13) of the constant width film casting (satisfying all
equations except boundary conditions (6) and (8)) was used as an initial value.

If a tracking strategy (deformed mesh method) is used, velocity and width are the solution
of a free surface problem (for given thicknesses at nodes). The velocity is first computed, then
the width. The mesh is therefore deformed and values of the thickness are transported with the
mesh. Practically one or two iterations are sufficient. The thickness of the film is then
computed by solving Equation (9). New velocity and width distributions are then computed
and so on until convergence. Computation is stopped when e/e0 and W/W0 vary less than
10−3. Convergence is usually quickly obtained (less than ten free surface iterations and less
than five thickness transport iterations). For high values of the Draw Ratio, very large
deformations leading to mesh degeneration are applied to the initial mesh. It would require a
remeshing technique and careful nodal value computations heavy to implement.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)



NUMERICAL SIMULATION OF FILM CASTING 9

Figure 5. Final thickness profile (e(L, y)) obtained for A=0.4 and DR=10: tracking strategy and finite volume
method ([2], - - -); tracking strategy and discontinuous finite element method (�); capturing strategy and discontinu-

ous finite element method (�).

Figure 6. Film shape for DR=10, A=0.4 computed with a discontinuous finite element method ((a) tracking
strategy, (b) capturing strategy).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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Figure 7. (a) Coarse mesh; (b) refined mesh; (c) final thickness profile e(L, y) for DR=10, A=1 (capturing strategy)
on coarse mesh (—) and refined mesh (- - -).

If a capturing strategy (fixed mesh method) is used, thickness and width are obtained
simultaneously from Equation (15). As a consequence, the computation algorithm is largely
simplified and convergence is more rapidly achieved. Hence this method, which is easier to
implement, is used to solve the time-dependent problem.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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4. STATIONARY RESULTS

In this section we first compare the different numerical strategies and we study mesh
convergence. Then we compare these 2D results with the previous 1D models of the film
casting process.

4.1. Numerical results

Figure 5 plots the final thickness profile (e(L, y)) obtained for A=0.4 and DR=10,
respectively, with a tracking strategy and a finite volume method (see d’Halewyn et al. [2]),
with a tracking strategy and a discontinuous Galerkin method and with a capturing strategy
and a discontinuous Galerkin method. These thickness profiles are very close. The discontinu-
ous Galerkin method provides more precise results (without a spurious thickness jump on the
symmetry axis). If a capturing strategy is used, small oscillations in the neighbourhood of the
edge of the film are a consequence of the transport of discontinuous functions.

Figure 6 plots global film shapes (thickness and width distributions) for DR=10 and
A=0.4 computed with a discontinuous finite element method ((a) tracking strategy, (b)
capturing strategy). There is good agreement between these two methods.

Mesh convergence is tested for the capturing strategy for DR=10 and A=1. The (fixed)
coarse and refined meshes are presented in Figure 7a and b. Figure 7c plots the final thickness
profile e(L, y) computed using these meshes. Results are equivalent in the central part of the
film. The refined mesh will be used for unstationary computations.

Figure 8. Free surface for DR=10, A=0.4 and comparison with result of the 1D model.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)



D. SILAGY ET AL.12

Figure 9. Velocity components profiles: (a) ũ ; (b) 6̃.

4.2. Comparison with pre6ious works

Figure 8 compares the free surface obtained with this 2D model to the one obtained with a
1D Newtonian model [1]. The 2D free surface is no longer linear between the die and the roll
and this is consistent with experiments. Figure 9a and b, presents the distribution of the two
components ũ and 6̃ of the velocity field. Two different flow zones are clearly pointed out.
Component 6̃ is nearly equal to zero between y=0 and y=1

2 W0. This means that uniaxial
extension occurs in the central part of the film and biaxial extension at the edges of the film.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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This is consistent with the mechanical analysis provided by Dobroth et al. in [8] explaining the
existence of the dog bone defect.

As the thickness of the final film has to be as regular as possible the lateral edge beads are
cut and recycled. Figure 10 draws the thickness profile on the chill roll (e(L, y)) for DR=10
and different values of the aspect ratio (A=0.2, 0.4 and 0.8).

5. UNSTATIONARY APPROACH

5.1. The time-dependent scheme

A fully implicit Gear scheme is used for Equation (15):

(ē(t)
(t

=
1

2Dt
(3ē(t)−4ē(t−Dt)+ ē(t−2Dt)). (17)

It is second-order in time and is accurate for the prediction of time-dependent problems. As it
requires at time t the knowledge of the thickness at time t−Dt and t−2Dt, the classical Euler
scheme was used at the first step:

(ē(t)
(t

=
1
Dt

(ē(t)− ē(t−Dt)).

As Equations (2)–(7) are not modified, it results in few modifications in the discontinuous
Galerkin formulation of the fictitious fluid method. The fixed point algorithm is unchanged.
A convenient value of the time step Dt is determined in the next section.

Figure 10. Final thickness profile e(L, y) for DR=10: A=0.2 (—); A=0.4 (- - -); A=0.8 (– –).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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Figure 11. Evolution of the final thickness with time for the constant width cast film process (DR=10, A=0).

5.2. Time step determination

The stability of the analytic solution (13) of the modified problem presented in section 2.5
has been widely studied (see [1] for references). At a critical Draw Ratio DRC=20.2 a Hopf
bifucation occurs. A pair of complex conjugate eigenvalues l=9 i14.06 cross the imaginary
axis and the steady state solution (13) becomes unstable. The linear stability method, used to
study the stability of the 1D model, allows to determine very precise values of the dominant
eigenvalues and DRC. By measuring the period of the thickness fluctuations of a time-depen-
dent simulation (Figure 11) in stable conditions (DRBDRC) and fitting the exponential decay,
one can estimate real and imaginary parts of the dominant eigenvalues (eigenvalues of greatest
real part). Those estimates can be compared with the very precise results of the 1D model for
A=0. A time step Dt=2.5×10−3, found to give a good agreement (see Table I), is used in
the following.

Table I. Eigenvalue for DR=10, A=0 and comparison with the result of the
1D model

Dt Re(l) Im(l)

−1.621.0×10−3 11.42
2.5×10−3 −1.45 11.57

−1.555.0×10−3 10.77

−1.44 11.861D model

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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Figure 12. Evolution of the final thickness in the middle part of the film with time for A=0.6 and different values
of DR: (a) DR=10; (b) DR=15; (c) DR=18; (d) DR=21; (e) DR=24; (f) DR=27; (g) DR=31.5; (h) DR=36.

5.3. The onset of Draw Resonance instability

The 2D model is used to study the response of the system to an imposed perturbation. If this
perturbation vanishes with time, it means that the process is stable. Figure 12 plots the
evolution with time of the final thickness in the central part of the film (x=L, y=0) for
A=0.6 and for different values of the Draw Ratio. For low values of the Draw Ratio
(105DR524), the perturbation decreases with time more and more slowly as DR increases.
For DR=31.5 and DR=36, the evolution of the thickness with time tends to sustained
periodic oscillations. This instability, known as draw resonance, occurs above a critical Draw
Ratio denoted DRC. For A=0.6, we have 275DRC531.5. The corresponding value for the
1D model (obtained more precisely) is DRC=27.3.

5.4. Critical cur6es

The critical curve is determined by studying the influence of A on the critical Draw Ratio.
For the 2D model, the critical Draw Ratio is delimited between stable and unstable values of
the Draw Ratio corresponding to the vanishing or non-vanishing behaviour of perturbations.
It leads to an estimated critical curve plot which is compared to the (more precise) critical
curve of the 1D model in Figure 13. The 2D model predicts that the aspect ratio A has a
stabilizing effect on the process and this effect is more pronounced than with the 1D model.
It means that the dog bone defect stabilizes the process. It leads to a maximum critical Draw
Ratio DRC=45 for an aspect ratio of 1. It should be noted that for A\1.2, the 2D critical
Draw Ratio is smaller than the 1D one.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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6. COMPARISON WITH EXPERIMENTAL RESULTS

In this section, we compare our results with experiments of Barq et al. [9] for the polyester
film extrusion process. They pointed out an interesting coupling between width and thick-
ness fluctuations. The film thickness is maximum in the middle when the width is mini-
mum. There is also a phase opposition for thickness oscillations in the middle and on the
edge of the film.

Because of its low elasticity level, polyester can be considered as Newtonian. We test our
unstationary approach for the same operating conditions (A=0.44 and DR=28.4). Our
model predicts that the process is nearly stable (DRC�28.5), whereas Barq et al. mention
an unstable situation. It means that the real critical Draw Ratio is smaller than the one
predicted by our model. This can be explained by the fact that the (3D) extrudate swell
phenomenon at the die exit is not taken into account. It is consistent with the recent work
of Souli et al. [10] showing that considering die swell in the constant width cast film
process leads to the prediction of smaller critical Draw Ratios. Following these authors, it
can be considered that swelling at flat die exit induces a 18% reduction of the extrusion
velocity and hence an 18% increase of the critical Draw Ratio. These considerations lead to
a real Draw Ratio DR�33. Our model predicts in these conditions sustained periodic
oscillations of width, thickness in the central part and thickness on the edge of the film as
shown in Figure 14. It shows clearly that, in agreement with the experimental results of
Barq et al., width and thickness on the edge of the film are in phase opposition with
thickness in the central part of the film.

Figure 13. Stability results and comparison with the 1D model: 2D stable (�); 2D unstable (�); 1D critical curve
(—).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 1–18 (1999)
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Figure 14. Dimensionless width, edge thickness and central thickness fluctuations for DR=33, A=0.6:
(a) W(L, t)/W0; (b) e(L, W(L, t), t)/e0; (c) e(L, 0, t)/e0.

7. CONCLUSIONS

This 2D Newtonian isothermal model of the film casting process in both stationary and
unstationary conditions leads to a non-linear coupled problem involving a free surface elliptic
system for velocity on the mean surface and a transport equation for the thickness of the film.
Velocity and thickness are separately computed (using, respectively, continuous and discontin-
uous finite element methods) and coupled with a fixed point algorithm.

Concerning the computation of the steady free surface, two different strategies were
considered. The first one, already used in [2], is a tracking strategy considering nodes at the
free surface as unknowns. The second one (a capturing strategy) introduces a fictitious fluid (of
very small thickness) in the neighbourhood of the film. The free surface is, in this case,
determined as the interface between the polymer fluid and the fictitious fluid. Both approaches
give consistent predictions of the so called dog bone defect with a reasonable computation
time. From a practical point of view, the fictitious fluid method is easier to implement and
used to study the stability of the process. The stationary results show that the process
parameters (DR and A) have a marked influence on the final section of the film.

The unstationary approach enables study of the influence of these parameters on the onset
of the draw resonance phenomenon. The critical curve shows that, consistent with the 1D
model predictions, the aspect ratio A has a stabilizing effect on the process (the instability
phenomenon can be postponed by increasing the aspect ratio). It was also found that the phase
shift between width and thickness fluctuations is consistent with the experimental observations
of Barq. et al.
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